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ABSTRACT 

The advent of convolutional codes provides us with extremely 
low er ror  rates at the expense of data rejection. These codes are  
compared to a perfect code and to a decision system capable of 
variable deletion rates. The deletion rates can be adjusted to V a l -  

ues equal to those of convolutional codes resulting thus in a fair 
comparison. 
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A COMPARISON OF DECISION SYSTEMS 

WITH DATA REJECTION 

1. INTRODUCTION 

It has been shown (References 1 and 2), that convolutional codes (References 3 and 4) can re- 
duce e r ror  rates to extremely low values. The only drawback is the necessity to reject data. This 
deletion rate, Pdel , is a function of EM, and the resulting probability of error.  The above results 
a re  shown in Figure 1. Unfortunately this type of graph does not offer a fair comparison between 
the convolutional codes and the algebraic ones, o r  other detection systems due to the fact that the 
curves representing the algebraic codes do not suffer from any rejection of the data. For example 
in the case of the biorthogonal n = 8 we see that for E/N, = 4 db 

pe = 7 . 2 1 4  x 1 0 - ~  and pC = 1 - P, = .9992786 

On the other hand for the convolutionalcode and the same 
signal to noise ratio 

Pe = 3 x  and Pdel = .03  

thus 

Pc = 1 - Pe - P,,, = .9697 

The abov simple calculation shows that although ---e 
convolutional code offers a smaller probability of error,  
the algebraic code offers a higher probability of correct 
detection. 

The performance of one code over another can be 
described by the average risk function B(P,,  Pc,  C ,  , cz, 
c,) where C , ,  c z ,  C, a re  cost functions, and B can be 
simply expressed as 

= C , P e  + C,PC + c, ( l - P c - P , )  

io-’ \ 
_ _  UNCODED 
_ - -  ( 2 3 .  12) GOLAY 

- (ANTIPODAL) 
- ORTHOGONAL - BIORTHOGONAL ( n  = 8 )  

(FilOM LUMB) 
RATE I ,  2 CONVOLUTIONAL 

NORMALIZED SIGNAL TO 
NOISE RATIO, E/”, (DB) 

Figure 1 -Comparative Performance of 
Communication Sys terns. 
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Thus unless c,, c, and C 3  are  known one cannot pass a judgment on the relative performance of 
two systems. However if  one of either Pe, P c ,  o r  PdeIetioncould be made the same for the two sys- 
tems in question (of course under equivalent Em,), then a comparison is possible without the 
knowledge of the c,'s. 

For example i f  the probability of deletion (D) is made the same for both systems then the two 
B'S become 

then 

but 

Substituting (2) in (1) we get 

P c i  = 1 - P p i  - D 

Since C - c, > O* then system 2 is better than system 1 i f  Pe, < P e l .  Thus we have showed that one 
way to compare the two systems is to keep ED,,  and^ the same for both systems, and then examine 
Pe for each of the systems; the system with smallest Pe gives a better performance. 

There a r e  at least two ways to lower the probability of er ror  of a system and simultaneously 
suf€er deletions. This e r ror  to deletion tradeoff can be accomplished by changing from a strictly 
e r ro r  correcting code, (let us  say it corrects up to and including e,  errors), to a combination er-  
ror  correction and detection code (say it corrects up to and including e, e r rors  and detects up to 
and including d errors). In general for the same redundancy the sum of the number of the e r ro r s  
corrected and the e r rors  detected for system 2 is larger than the number of e r rors  corrected in 
system 1, o r  

e ,  < e l  < e 2  f d, . 

*C2 < C1 for all cases  where the error i s  undesirable and correct detection i s  desirable, i.e.,  the error cost i s  larger than the correct 
detection cost. 
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The above equation indicates that although system 2 will  correct less e r rors  than system 1, sys-  
tem 2 is able to reject data if e r rors  a re  detected and, since in general e + d > e l ,  the number of 
undetected and uncorrected e r rors  is less than that of system 1. Consequently the e r ror  rate in 
system 2 is smaller than that of system 1. The second method is a specific case of the more gen- 
eral  case discussed in Reference 5. This technique is much simpler than e r ror  detection and 
correction. Under this technique the largest of the correlator outputs is detected. Up to this point 
the procedure is identical to the Maximum Likelihood Decision Scheme. The value of the ratio 

is measured and the data is rejected i f  this value is smaller than a predetermined threshold B,. 

If the value of the Statistic B, is larger than B, the decision is that x ( ~ )  is the useful signal. 

2. PERFORMANCE O F  THE GOLAY (23,12) CODE WITH ERROR CONTROL 

This code was chosen because it is a perfect code and will correct all three or less errors.  

The word e r ror  probability is given by 

P, = (1) Pi (1-P)n-i 
i = 4  

where P is the bit e r ror  probability and is given by 

e - t 2/2 
d t  . 

(3) 

E/No is the Energy per bit to Noise power per unit bandwidth. For antipodal signals 1 - p = 2; i f  
E/No is the energy per information bit to No then the energy per bit to No is k/n (E/No) because there 
are  k information and n bits per word. Thus for the Golay (23, 12) Code 

* x ( ~ )  is the largest output, p is the sample mean and c is the sample standard deviation. 
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(3) and (5) were used to plot the performance curve Of this code (shown as the dotted line) in Fig- 
ure 2. Equation 4 is a special case of the generalized equation. 

l o - '  

lo-2 
> 
-I 
k 
m 
- 
2  IO-^ 

12: 1 0 - ~  

a 
12: 
0 
IY w 

12: 

9 1 0 - 5  

n 

--- NO REJECTION 
REJECTION RATE AS INDICATED 

WITH SEOUENTIAL OECOOING 
150. 251 CONVOLUTIONAL CODE 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

NORMALIZED SIGNAL TO 
NOISE RATIO, E/N, (DB) 

Figure 2-Performance of the 
Golay (23, 12, 3) code. 

withB, = -m and A = d2E(1 -p)/No;whenB, = - a , y  = s - A  

J- m J -  m 

but 

now i f  

t = dfi 

then 

4 



This is clearly the same as Equation (2). Equation (4) gives the probability of e r ror  under a Max- 
imum Likelihood Decision provided the largest signal exceeds a given threshold B, . If it does not 
exceed B, no decision is made (the data is erased). Under this decision scheme one can reduce 
the probability of er ror  to any desired value at the expense of higher rejection rates. 

The probability of correct detection for binary antipodal signals is given by 

with A = m. P, is given by (4) and the erasure rate E, is 

E, = l-P, - P e .  ( 8 )  

This detection scheme can be added to coding in the following manner. 

The n coded bits a re  detected according to this scheme with Pe , P , ,  and E as given by Equa- 
tions (e), (7), and (8). 

I€ the number of erasures in the word of n bits is larger than r we reject the data. 

Then the word deletion rate (from now on referred to as deletion rate) is given by 

= 1 - rb) E: (1 -E,)"-' 
j = O  

(9) 

under this scheme the word e r ror  probability for an (n, k, e )  perfect code* with the erasures as- 
sumed as er rors  is 

where P = Pe and Q = Pc = 1 - P .  Equation (10) is an upperbound on the word e r ror  probability be- 
cause under this scheme all erasures a re  assumed to be errors .  To find the exact word e r ror  
probability let us establish a decision rule as follows. If the number of bits that do not satisfy the 

*(n, k,  e )  - n bits per word; k information bits; corrects all e or l e s s  errors. 
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. 

threshold conditions* is larger than a specified number r ,  the word is deleted. If it is less than 
r then a Maximum Likelihood decision is made on all n bits. Under this decision rule the deletion 
rate is still given by Equation (9). 

The expression for the word e r ror  probability is found in this manner. There a re  two types 
of bits in the n-b i t  word. Type-one bits satisfy the threshold requirements and have P and Q given ' 

by 

P = prob(X(N) > B,;  B E W ) +  

Q = prob ( x ( ~ )  > B,; B E R -  w) 

Type-two bits do not satisfy the threshold requirements. The probability of e r ror  for those bits is 

E, = prob ( x ( ~ )  5 B,;  BE^) 

= prob (860 Vx(,)) - prob (x(~) > B,; B E W )  

= PMLDs - P'. 

Similarly the probability of correct decision for the type-two bits is 

and the rejection rate is 

E, = E, + Eq ; 

using Equation 11-15 and 

then 

E, = EP + E, = PMLDS + QMLDS - P - Q = 1 - P - Q 

'Those bits were erasures in the previous scheme. 
to, i s  the noise parameter space and 
SMLDS stands for Maximum Likelihood Decision System. 

- w i s  the sknd parameter space. 
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an obvious result. The word e r ror  probability for 4 type-two correct bits, i type-two incorrect bits, 
j incorrect type-one bits, and n-4-i-j correct type-one bits in an e e r ror  correcting n-bit code is 
given by 

with 4 + i 5 r .  Since from Equation (9) the deletion rate is a function of %and r, different combina- 
tions of E,and will  result in the same D; the above results a re  shown in Figure 3. rl 

For deletion rates .03 and .3, Eband the corresponding r were read from Figure 3 as shown in 
Tables 1 and 2. 

0.3 

0.25 

- 
9 : 0.20 

s 
Y I- 

0.15 
LIL 

LIL 5 
w 0.1 

0.05 

0.01 0.03 0.1 0.2 0.3 0.4 I 5 
WORD DELETION RATE (D) 

Figure 3-Erasure rate vs word deletion rate for n = 23. 

Next P(B,) and Q(B,) were found for all B, for binary antipodal signals by using Equations (6) 
and (7), A = fi(k/rn) (UNO) ; the P and Q corresponding to the required erasure rate %were found as 
shown on Tables 1 through 5 for the signal to noise ratios of interest; the results were plotted in 
Figure 2 together with the usual performance of the Golay Code (zero erasure rate). An examina- 
tion of Figure 2 indicates that the performance of the convolutional decoding is superior than the 
above scheme of decoding. 
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Table 1 

P Q P W  

.8912 .0451 

.a623 .04423 
.04310 .832 

.798 .04227 
,764 .04208 
.7275 .04103 
.6932 .04258 
.6552 .04304 
.6168 .04393 

E 

.048 

.083 

.12 

.159 

.198 

.24 

.278 

.32 

.362 

Bt 
.53 
.79 
.97 

1.13 
1.27 
1.40 
1.51 
1.62 
1.73 

r 

1 
2 
3 
4 
5 
6 
7 
8 
9 

~ 

.0608 

.0547 

.0483 

.043 

.038 

.0325 

.0298 

.0248 

.0212 

D = .03 E/N, = 3.5 db Q H L D s  = -9289 1 .053 1 3; 1 .059711 
.lo55 .050658 
.170 1.17 .04133 

.887289 

.a43842 

Table 2 

D = .05 E/N, = 3.5 db Q Y L D S  = .93962 

r E Bt P Q P W  

1 .018 .26 .05637 .92563 .04184 
3 .064 .76 .048 .888 .04153 
5 .12 1.08 .0397 .8403 .04177 
7 -187 1.31 .0316 .7814 .04245 
9 .259 1.56 .0244 .7166 .04453 

11 .337 1.77 .01818 .64782 .04745 

Table 3 

D = .03 E/N = 4 d b  Q Y L D S  = ,94962 

.0135 

.lo55 

.170 
9 .239 I- 11 .315 

P Q 
.9390 
.go638 
.8611 
.8037 
.7407 
.670 

p w 

.0245 

.02441 

.02444 

.0248 

.0262 

.0282 

B t 
.25 
.78 

1.10 
1.39 
1.62 
1.84 

.0475 

.04062 

.0334 

.0263 

.0203 

.0150 

D = .3 E/N, = 4 db 

.048 

.012 

.198 

.278 

.74 
1.18 
1.49 
1.73 

.041423 

.031693 

.023732 

.0174149 

.910577 

.848307 

.778268 

.704585 

.0143 

.0134 

.0130 

.0134 
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r E Bt P 

3 .053 1.31 .01377 
5 .lo55 1.66 ,01026 
7 .170 1.94 .00729 

Q PW 
.000848 .93323 

.88424 .000854 

.82271 .000903 

Table 5 

3 .12 .172 .0094945 .E3705055 
5 .198 .205 .006299 .795701 
7 .278 .230 ,00412 ,71788 

1 1 D = .03 E/N, = 8 db QMLDS = .995087 

.0003462 

.0003458 
,0003897 

.944506 .0000032 
,892934 .0000035 

2.02 .002494 . 0 0 15 6 6 
.000951 

_ _ _ ~  

D = .3 E/N, = 8 db QYLDS = .995087 1 
3 
5 
7 

.I2 2.43 .0014555 .87 85445 .83 x 

.278 3.04 .000432 .721568 1.44 x 

.198 2.78 .000772 .801228 .99 x 10-6 

3. ORTHOGONAL CODES WITH DATA REJECTION 

The performance of orthogonal signals when rejection is allowed has already been analyzed 
in Reference 5 for both the coherent and non-coherent cases, and for six different statistics. The 
simplest* statistic is 

and for p = 0 and CT = 1 it becomes the familiar largest of the signals. The decision scheme is 
this. If the largest signal x ( ~ ) ,  is larger than Bt the signal is accepted as the useful signal. If 
x 

is 
is smaller than B, the data is rejected. Under this scheme the probability of correct decision (N) 

'This statistic makes most of the assumptions as to the knowledge of p and 0. 
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where f ( Z )  is the pdf of the useful signal and f ( z )  is the pdf of the noise signals. "Ire probability 
of e r ro r  is 

Pe = ( N - 1 )  f ( x )  f ( t ) d I N - '  dx f s ( s ) d s  
B. 

and the rejection rate is 

It should be noted that with B, = -a 

and 

lo - '  

10-2 

10-3 2 

9 

J - 
m 

10-4 

a 
OI 

0 
10-5 

D 
OI 

0 
10-6 

10-7 

D 

ORTHOGONAL 
BIORTHOGONAL 

- 
0 RATE 1 /2  CONVOLUTIONAL 

2 3 4 5 6 7 8 9 13 1 1  12 13 
NORMALIZED SIGNAL TO NOISE RATIO, 

E/N, (DB) 

Figure 4-Performance of biorthogonal codes for 
n = 8 and deletion rates of 0, .03, .l, .3 (For 
this large n the performance of orthogonal and 
biorthogonal codes i s  indistinguishable for al I 
prac t ica I purposes). 

= o  

This last condition on B, results in the Maximum 
Likelihood Decision Scheme. The results of the 
performance of the orthogonal signals a re  shown 
in Figures 4 to 9. 

NORMALIZED SIGNAL TO NOISE RATIO, 
E/", (DB) 

Figure 5-Performance of orthogonal and 
biorthogonal n = 4 and D = 0, .03, . l ,  .3. 
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1 0 - ~  

1 0 - 8  
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Figure 6-Performance of orthogonal and 
biorthogonal n = 5 and D = 0, .03, .1, .3. 
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Fiaure 8-Performance of orthogonal and 
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Figure 7-Performance of orthogonal and 
biorthogonal n = 6 and D = 0, .03, .l, .3. 
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Fiaure 9-Performance of orthogonal v -  - - 
biorthogonal n = 7 and D = 0, .03, .1, .3. n = 8 and D = 0, .03, .1,  .3. 
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4. BIORTHOGONAL CODES WITH DATA REJECTION 

Application of the procedure of the previous paragraph to biorthogonal signals* results in 

rm r r  

similarly 

Pe = a(l-a)? 

where 

and 

D l - P , - P e .  

The results of this type of detection have been plotted in Figures 4 to 9. 

5. CONCLUSIONS 

Figure 2 shows how the performance of the Golay (23, 12, 3) code (dotted line) can be improved 
by allowing deletions for 3% or  30% of the data. This method of improving error  rate at the ex- 
pense of data rejection for algebraic codes is not unique. Consequently the amount of improvement 
shown is not necessarily optimum. 

In the process of obtaining the curves of Figure 2, r and E, were allowed to vary in each case 
to values that produced a constant deletion rate, D. This was done in order to examine the varia- 
tion of the word error probability as a function of r and E,. Observation of the Tables indicates 
that the variation of Pw is insignificant, although it reaches some minimum which corresponds to 
higher r ' s  as the signal to noise ratio increases. Since higher values of r correspond to higher 

, threshold values, the above result is reasonable. 

*See appendix. 
?There i s  a extra term which has been ignored because it i s  very small for the cases  considered here (see Appendix). 



Examination of Figure 4 shows that 

(a) The performance of orthogonal and biorthogonal codes is indistinguishable for all curves 
(D = 0, .03, .05, .3). 

(b) At 3 db the orthogonal and biorthogonal codes a re  superior to the convolutional codes for 
D = .3. 

(c) At 3.5 db the orthogonal and biorthogonal codes are slightly better than the convolutional 
qodes for D = .05. 

(d) At 4 db, D = .03 the performance of the two different systems is about the same. 

(e) The improvement in performance as D increases is much more pronounced in orthogonal 
and biorthogonal codes than in algebraic codes. 

Figures 5 to 9 show the performance of orthogonal and biorthogonal codes for some other n's. It 
should be noticed that for relatively larger n orthogonal and biorthogonal codes perform equally 
well. 
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APPENDIX A 

1. In the case of N biorthogonal signals the number of correlators is N/2 * and the probability of 
correct decision is the probability that the useful signal is larger than the absolute value of any of 
the (N/2) - 1 remaining noise signals and larger than B, , given that the sign of the useful signal has 
been correctly determined; thus 

or  equivalently 

I This statement is equivalent to the probability that the largest and smallest noise signals are  within 
the range ( -s  , s ) ;  for Gaussian signals with zero mean 

Thus, independently of the relative frequency of positive and negative useful signals. 

( N R 1 -  1 

(A-3) 

B t , O .  

2. An e r ro r  occurs whenever the absolute value of either the smallest o r  the largest noise signal 
is larger than the absolute value of the useful signal, o r  the useful signal is mistaken for its nega- 
tive. If the above mentioned events a re  named events A,  B and C respectively, then, 

P, = P(AuBuC) = P(A) + P(B) + P(C) - P(Afll3) 

- €'(BE) - P(AK) + P(AfBX) . (A-4) 

*N = 2" i s  the number of correlators necessary for N orthogonal signals. 
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(A-5) 

(A-6) 

(A-7) 

Again due to symmetries in f (X(l))and f ( x ( ~ , )  , and symmetry of f , ( s ) fo r  the word and its 
complement, 

P(A) = P(B) = a 

Finally 

f ,  ( - s )  

and P(C) has a negligible value for values of s > 0 (B, 2 0 )  and can be neglected for A 2 3 and n ? 16 in 
this paper. This can be seen in Figure A1 where f , ( - S )  and 
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. 

have been plotted. 

where 

Substituting these results into (A-5) with P(C) 5 0 

P, = P(A) + P(B) - P(A)P(B) 

= a ( 2 - a )  . 
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LIST OF SYMBOLS 

n the word length 

N the number of words 

k 

e 

number of information bits per word 

the maximum bit correction capability of a code 

the bit erasure rate 

D the word deletion rate 

P the bit error  probability 

Q the probability of correct detection (on a bit basis) 

the probability that an erasure bit is in e r ro r  

the probability that an erasure bit is correct (EP + E, = Eb) 

P,,,, the error  rate of a Maximum Likelihood Decision System 

Q,,,, = 1 - P,,,, ; the probability of correct detection for MLDS 

E P  

E, 

probability of correct detection (on a word basis) 

word error  rate 

the signal energy per bit of information 

noise power per unit bandwidth 

correlation coefficient 

the union of events 

the intersection of events 

for all 

the largest of the noise signals. 
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